Linkedin Machine Learning and AI Foundations Decision Trees with KNIME
Posted on 01 Jul 21:28 | by AD-TEAM | 24 views
Linkedin Machine Learning and AI Foundations Decision Trees with KNIME
Language: English
Files Type:mp4, knwf, srt| Size:311.01 MB
Video:01:59:57 | 1280X800 | 257 Kbps
Audio:mp4a-40-2 | 128 Kbps | AAC
Genre:eLearning
About :
N/A
Videos Files :
01 The basics of decision trees.mp4 (7.18 MB)
02 What you should know.mp4 (1.96 MB)
03 How to use the practice files.mp4 (4.52 MB)
01 What is a decision tree.mp4 (7.2 MB)
02 The pros and cons of decision trees.mp4 (10.06 MB)
03 Introducing KNIME.mp4 (12.78 MB)
04 A quick review of machine learning basics with examples.mp4 (20.28 MB)
05 An overview of decision tree algorithms.mp4 (12.49 MB)
01 Ross Quinlan, ID3, C4.5, and C5.0.mp4 (5.68 MB)
02 Understanding the entropy calculation.mp4 (11.72 MB)
03 How C4.5 handles missing data.mp4 (5.97 MB)
04 The Give Me Some Credit data set.mp4 (7.94 MB)
05 Working with the prebuilt example.mp4 (15.95 MB)
06 KNIME settings for C4.5.mp4 (8.62 MB)
07 How C4.5 handles nominal variables.mp4 (7.4 MB)
08 How C4.5 handles continuous variables.mp4 (4.18 MB)
09 Equal size sampling.mp4 (6.42 MB)
10 A quick look at the complete C4.5 tree.mp4 (6.44 MB)
11 Evaluating the accuracy of your C4.5 tree.mp4 (9.29 MB)
12 When to turn off pruning.mp4 (16.45 MB)
01 Introducing Leo Breiman and CART.mp4 (11.64 MB)
02 What is the Gini coefficient.mp4 (6.95 MB)
03 How CART handles missing data using surrogates.mp4 (9.77 MB)
04 Changing the settings in KNIME.mp4 (7.82 MB)
05 How CART handles nominal variables.mp4 (4.61 MB)
06 A quick look at the complete CART tree.mp4 (7.15 MB)
07 Evaluating the accuracy of your CART tree.mp4 (3.41 MB)
01 MPG data set.mp4 (4.52 MB)
02 The regression tree prebuilt example.mp4 (11.99 MB)
03 The math behind regression trees.mp4 (4 MB)
04 How RT handles nominal variables.mp4 (11.11 MB)
05 Ordinal variable handling.mp4 (10.08 MB)
06 Closer look at a full regression tree.mp4 (9.08 MB)
07 KNIME's missing data options for regression trees.mp4 (7.67 MB)
08 Line plot.mp4 (7.93 MB)
09 Accuracy.mp4 (6.59 MB)
01 Next steps.mp4 (1.71 MB)
02 What you should know.mp4 (1.96 MB)
03 How to use the practice files.mp4 (4.52 MB)
01 What is a decision tree.mp4 (7.2 MB)
02 The pros and cons of decision trees.mp4 (10.06 MB)
03 Introducing KNIME.mp4 (12.78 MB)
04 A quick review of machine learning basics with examples.mp4 (20.28 MB)
05 An overview of decision tree algorithms.mp4 (12.49 MB)
01 Ross Quinlan, ID3, C4.5, and C5.0.mp4 (5.68 MB)
02 Understanding the entropy calculation.mp4 (11.72 MB)
03 How C4.5 handles missing data.mp4 (5.97 MB)
04 The Give Me Some Credit data set.mp4 (7.94 MB)
05 Working with the prebuilt example.mp4 (15.95 MB)
06 KNIME settings for C4.5.mp4 (8.62 MB)
07 How C4.5 handles nominal variables.mp4 (7.4 MB)
08 How C4.5 handles continuous variables.mp4 (4.18 MB)
09 Equal size sampling.mp4 (6.42 MB)
10 A quick look at the complete C4.5 tree.mp4 (6.44 MB)
11 Evaluating the accuracy of your C4.5 tree.mp4 (9.29 MB)
12 When to turn off pruning.mp4 (16.45 MB)
01 Introducing Leo Breiman and CART.mp4 (11.64 MB)
02 What is the Gini coefficient.mp4 (6.95 MB)
03 How CART handles missing data using surrogates.mp4 (9.77 MB)
04 Changing the settings in KNIME.mp4 (7.82 MB)
05 How CART handles nominal variables.mp4 (4.61 MB)
06 A quick look at the complete CART tree.mp4 (7.15 MB)
07 Evaluating the accuracy of your CART tree.mp4 (3.41 MB)
01 MPG data set.mp4 (4.52 MB)
02 The regression tree prebuilt example.mp4 (11.99 MB)
03 The math behind regression trees.mp4 (4 MB)
04 How RT handles nominal variables.mp4 (11.11 MB)
05 Ordinal variable handling.mp4 (10.08 MB)
06 Closer look at a full regression tree.mp4 (9.08 MB)
07 KNIME's missing data options for regression trees.mp4 (7.67 MB)
08 Line plot.mp4 (7.93 MB)
09 Accuracy.mp4 (6.59 MB)
01 Next steps.mp4 (1.71 MB)
Related News
System Comment
Information
Users of Visitor are not allowed to comment this publication.
Facebook Comment
Member Area
Top News