Applied Machine Learning With Python (2022)

Posted on 04 Oct 10:15 | by mitsumi | 13 views
Applied Machine Learning With Python  (2022)

Published 10/2022
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 17 lectures (3h 29m) | Size: 2.9 GB


Machine Learning with Python and MS Excel


What you'll learn
Regression: Simple Linear Regression, Multiple Linear Regression, Polynomial Regression, SVR, Decision Tree Regression, Random Forest Regression
Classification: Logistic Regression, K-NN, SVM, Kernel SVM, Naive Bayes, Decision Tree Classification, Random Forest Classification
Clustering: K-Means, Hierarchical Clustering
Deep Learning: Artificial Neural Networks, Convolutional Neural Networks
Requirements
Basic knowledge of computer programming
Description
Interested in the field of Machine Learning? Then this course is for you! This course has been designed by two professional Data Scientists so that we can share our knowledge and help you learn complex theories, algorithms, and coding libraries in a simple way. We will walk you step-by-step into the World of Machine Learning. With every tutorial, you will develop new skills and improve your understanding of this challenging yet lucrative sub-field of Data Science.
This course is fun and exciting, but at the same time, we dive deep into Machine Learning. It is structured the following way
Part 1 - Data Preprocessing
Part 2 - Regression: Simple Linear Regression, Multiple Linear Regression, Polynomial Regression, SVR, Decision Tree Regression, Random Forest Regression
Part 3 - Classification: Logistic Regression, K-NN, SVM, Kernel SVM, Naive Bayes, Decision Tree Classification, Random Forest Classification
Part 4 - Clustering: K-Means, Hierarchical Clustering
Part 5 - Association Rule Learning: Apriori, Eclat
Part 6 - Reinforcement Learning: Upper Confidence Bound, Thompson Sampling
Part 7 - Natural Language Processing: Bag-of-words model and algorithms for NLP
Part 8 - Deep Learning: Artificial Neural Networks, Convolutional Neural Networks
Part 9 - Dimensionality Reduction: PCA, LDA, Kernel PCA
Part 10 - Model Selection & Boosting: k-fold Cross Validation, Parameter Tuning, Grid Search, XGBoost
Moreover, the course is packed with practical exercises that are based on real-life examples. So not only will you learn the theory, but you will also get some hands-on practice building your own models.
And as a bonus, this course includes both Python and R code templates which you can download and use on your own projects.
Important updates (June 2020)
CODES ALL UP TO DATE
DEEP LEARNING CODED IN TENSORFLOW 2.0
TOP GRADIENT BOOSTING MODELS INCLUDING XGBOOST AND EVEN CATBOOST!
Who this course is for
Just some high school mathematics level and Working professionals also

Download link

rapidgator.net:


uploadgig.com:




1dl.net:

Related News

Machine Learning In Python - From A To Z Machine  Learning Machine Learning In Python - From A To Z Machine Learning
Machine Learning In Python - From A To Z Machine Learning Published 10/2022 MP4 | Video: h264,...
MachineLearningClassificationBootcampinPython MachineLearningClassificationBootcampinPython
-Machine-Learning-Classification-Bootcamp-in-Python Language: English Files Type: mp4, pptx, xlsx,...
Python for Machine Learning: The Complete Beginner's Course Python for Machine Learning: The Complete Beginner's Course
Python for Machine Learning: The Complete Beginner's Course MP4 | Video: h264, 1280x720 | Audio:...
Machine Learning with Python Basics (For  Beginners) Machine Learning with Python Basics (For Beginners)
Machine Learning with Python Basics (For Beginners) Published 10/2022 MP4 | Video: h264, 1280x720...

System Comment

Information

Error Users of Visitor are not allowed to comment this publication.

Facebook Comment

Member Area
Top News