UdacityBecome a Deep Reinforcement Learning Expert v1 0 0

Posted on 03 Dec 09:41 | by AD-TEAM | 14 views
UdacityBecome a Deep Reinforcement Learning Expert v1 0 0


Udacity-Become a Deep Reinforcement Learning Expert v1.0.0
Language: English
Files Type: mp4, css, gif, ttf, vtt, js, woff2, html, woff| Size: 2.22 GB
Video: 11:47:48 | 1280X720 | 787 Kbps
Audio: mp4a-40-2 | 192 Kbps | AAC
Genre:eLearning





Videos Files :
01. Welcome To DRLND-i1-l0n1ntes.mp4 (8.4 MB)
02. RL In The Real World-IGlAyGbOTHo.mp4 (5.31 MB)
04. Unity Machine Learning Agents-jC12h4UAxqs.mp4 (16.5 MB)
01. Introduction-6jSFl5kxIBs.mp4 (5.15 MB)
02. Applications-CV6B84mKRNM.mp4 (8.46 MB)
03. The Setting-nh8Gwdu19nc.mp4 (7.75 MB)
04. Resources- YPqfAnCqtk.mp4 (6.97 MB)
01. Introduction-X 9l ZqXXBA.mp4 (2.9 MB)
02. The Setting, Revisited-V6Q1uF8a6kA.mp4 (7.36 MB)
03. Episodic vs. Continuing Tasks-E1I-BPanSM8.mp4 (10.07 MB)
06. The Reward Hypothesis-uAqNwgZ49JE.mp4 (4.38 MB)
07. Goals and Rewards, Part 1-XPnj3Ya3EuM.mp4 (6.84 MB)
08. Goals and Rewards, Part 2-pVIFc72VYH8.mp4 (8.05 MB)
10. Cumulative Reward-ysriH65lV9o.mp4 (9.96 MB)
11. Discounted Return-opXGNPwwn7g.mp4 (14.3 MB)
13. MDPs, Part 1-NBWbluSbxPg.mp4 (3.86 MB)
14. MDPs, Part 2-CUTtQvxKkNw.mp4 (6.82 MB)
17. MDPs, Part 3-UlXHFbla3QI.mp4 (14.75 MB)
01. Introduction-9Wyf5Zsska8.mp4 (5.39 MB)
02. Policies-hc3LrvaC13U.mp4 (20.24 MB)
04. Gridworld Example-XeHBmPFqTsE.mp4 (2.38 MB)
05. State-Value Functions-llakAjwox 8.mp4 (5.28 MB)
06. Bellman Equations-UgIaDMvSdUo.mp4 (4.14 MB)
08. Optimality-j231aRV74QM.mp4 (5.99 MB)
09. Action-Value Functions-KJLaRfOOPGA.mp4 (6.6 MB)
11. Optimal Policies-2rguYpVyCto.mp4 (7.11 MB)
01. L601 Intro RENDER V2-3H5x0lstvmo.mp4 (1.18 MB)
02. L602 Gridworld Example RENDER V2-2-Lwibg IfmrA.mp4 (3.46 MB)
03. L603 Monte Carlo Methods RENDER V3-2-titaMCRl224.mp4 (8.29 MB)
04. L604 MC Prediction Part 1RENDER V2-6ts9gdIS6vg.mp4 (4.76 MB)
05. L605 MC Prediction Part 2 RENDER V3-jR49ZyKuJ98.mp4 (1.96 MB)
06. L606 MC Prediction Part 3 RENDERv1 V4-9LP6uXdmWxQ.mp4 (2.05 MB)
09. MC Prediction - Solution Walkthrough-Pwiqk7Pncgc.mp4 (13.73 MB)
11. L611 Greedy Policies RENDER V4-DH6c-aODMLU.mp4 (2.56 MB)
12. L612 Epsilon Greedy Policies RENDER V4-PxJMtlR06MY.mp4 (4.68 MB)
15. L615 Incremental Mean RENDER V4-h-8MB7V1LiE.mp4 (3.32 MB)
16. L617 Constant Alpha Edits RENDER V1-LetHoOtNdJc.mp4 (1.05 MB)
16. MC Control Constant-alpha-QFV1nI9Zpoo.mp4 (12.46 MB)
17. M1 L6 S2 V1-6E 3NJcoxmU.mp4 (13.76 MB)
01. Introduction-yXErXQulI o.mp4 (20.67 MB)
03. L602 Gridworld Example RENDER V2-2-Lwibg IfmrA.mp4 (3.46 MB)
03. Quiz MC Control Methods-ZwIg6LDMyuo.mp4 (2.61 MB)
04. TD Control Sarsa Part 1-HYV0SP9wm7g.mp4 (3.46 MB)
04. TD Control Sarsa Part 2-U CV-UC9G2c.mp4 (2.22 MB)
06. TD Control Sarsamax-4DxoYuR7aZ4.mp4 (16.53 MB)
08. TD Control Expected Sarsa-kEKupCyU0P0.mp4 (4.28 MB)
02. Introduction-GPjK124RU5g.mp4 (33.2 MB)
03. Discrete vs. Continuous Spaces-uHstLeRzaE8.mp4 (21.37 MB)
05. Discretization-j2eZyUpy--E.mp4 (12.55 MB)
08. Tile Coding-BRs7AnTZ 8k.mp4 (11.03 MB)
11. Coarse Coding-Uu1J5KLAfTU.mp4 (10.3 MB)
12. Function Approximation-UTGWVY6jEdg.mp4 (20.08 MB)
13. Linear Function Approximation-OJ5wrB7o-pI.mp4 (28.67 MB)
14. Kernel Functions-RdkPVYyVOvU.mp4 (8.91 MB)
15. Non-Linear Function Approximation-rITnmpD2mN8.mp4 (4.95 MB)
16. Summary-MTEBk43oByU.mp4 (9.91 MB)
01. Arpan Rollercoaster-Rf6cCYRqV58.mp4 (7.81 MB)
02. Deep RL in Robotics-IjG IWJdb1w.mp4 (7.29 MB)
01. DQN Overview-WgiAvr7COR0.mp4 (4.85 MB)
01. From RL to Deep RL-7HLJ0uaR1F0.mp4 (3.54 MB)
02. Deep Q-Networks-GgtR d1OB-M.mp4 (25.67 MB)
03. Experience Replay-wX -SZG-YMQ.mp4 (48.38 MB)
04. Fixed Q-Targets-SWpyiEezfp4.mp4 (20.97 MB)
05. Deep Q-Learning Algorithm-MqTXoCxQ eY.mp4 (17.45 MB)
09. 10 Double DQN V2-PGCEMLujiGI.mp4 (3.46 MB)
10. 10 Prioritized Experience Replay V1-cN8z-7Ze9L8.mp4 (5.86 MB)
11. 10 Dueling DQN V2-zZeHbPs39Ls.mp4 (1.64 MB)
13. Summary-x6JggcDTcys.mp4 (7.2 MB)
01. 01 Introduction RENDER V2-dfeawuScC7k.mp4 (4.65 MB)
02. 02 Welcome!-1oElWzRt-lU.mp4 (7.16 MB)
02. 03 Transitioning-BvDvxw8e0CY.mp4 (1.48 MB)
03. 03 CC API HSSC HS RENDER V3-a9-HdpCaYW4.mp4 (3.3 MB)
09. 09 Jetson TX2 Edits V1-M26z7vTti g.mp4 (6.14 MB)
09. Jetson Overview-i56qM6NNW9A.mp4 (14.64 MB)
10. 10 Summary HS V3-cb1FGgZIitc.mp4 (2.57 MB)
04. Getting Started-ltz2GhFv04A.mp4 (1.58 MB)
02. Career Services-cuKecPpZ7PM.mp4 (10.12 MB)
02. Introduction-Vnj2VNQROtI.mp4 (9.59 MB)
03. GitHub profile important items-prvPVTjVkwQ.mp4 (3.36 MB)
04. Good GitHub repository-qBi8Q1EJdfQ.mp4 (3.72 MB)
05. Interview with Art - Part 1-ClLYamtaO-Q.mp4 (21.79 MB)
06. Identify fixes for example "bad" profile-AF07y1oAim0.mp4 (569.35 KB)
06. Identify fixes for example "bad" profile-ncFtwW5urHk.mp4 (1.59 MB)
07. Quick Fixes-Lb9e2KemR6I.mp4 (3.99 MB)
08. Quick Fixes #2-It6AEuSDQw0.mp4 (2.25 MB)
10. Interview with Art - Part 2-Vvzl2J5K7-Y.mp4 (13.17 MB)
12. Reflect on your commit messages- 0AHmKkfjTo.mp4 (3.03 MB)
13. Participating in open source projects-OxL-gMTizUA.mp4 (2.77 MB)
14. Interview with Art - Part 3-M6PKr3S1rPg.mp4 (25.04 MB)
15. Participating in open source projects 2-elZCLxVvJrY.mp4 (3.3 MB)
16. Starring interesting repositories-U3FUxkm1MxI.mp4 (2.45 MB)
16. Starring interesting repositories-ZwMY5rAAd7Q.mp4 (3.46 MB)
01. M3 L2 C01 V2-mMnhi8yzwKk.mp4 (4.23 MB)
02. M3 L2 C02 V1-v8tGjlc2aG4.mp4 (2.69 MB)
04. M3 L2 C04 V3-5E86a0OyVyI.mp4 (4.97 MB)
05. M3 L2 C05 V1-0XzzqIXyax0.mp4 (1.5 MB)
06. M2L3 04 V1-QicxmyE5vTo.mp4 (21.03 MB)
07. M3 L2 C07 V3-2poDljPvY58.mp4 (2.07 MB)
11. M2L3 02 V2-ToS8vXGdODE.mp4 (32.51 MB)
01. M3L3 C01 V3-ZEhQRASU5O4.mp4 (7.4 MB)
02. M3L3 C02 V6-zoOgRoaxGiU.mp4 (6.51 MB)
03. M3L3 C03 V2-dJz p4FKE-g.mp4 (6.52 MB)
04. M3L3 C04 V2-St9ftvMQ ks.mp4 (4.26 MB)
05. M3L3 C05 V2-o6CI2q3IXEs.mp4 (9.15 MB)
01. Instructor Introduction-sokSgNtGj9Y.mp4 (3.24 MB)
02. Training an agent to play atari-pong!-w27mvWFBnvQ.mp4 (337.4 KB)
04. Noise Reduction-GCGqT2knFJ0.mp4 (2.93 MB)
05. Credit Assignment-tfZw1moB25Y.mp4 (1.7 MB)
07. pong with REINFORCE walkthrough-eKIjPrQWIgg.mp4 (17.37 MB)
09. Importance Sampling-cYPvWriOPIk.mp4 (5.69 MB)
10. PPO Part 1 The Surrogate Function-Y-boYZlpO7g.mp4 (3.27 MB)
11. PPO Part 2 Clipping Policy Updates-NRzjGGX6c34.mp4 (5.27 MB)
12. TLPPO Summary V1-qRAUAAWA kc.mp4 (1.23 MB)
13. Pong with PPO walkthrough-XhfhR7Z01S0.mp4 (8.34 MB)
01. M3L501 Introduction HS 1 V1- OHo1pEaJcQ.mp4 (8.05 MB)
02. M3 L5 02 Motivation V1-dpFPlDtdxyQ.mp4 (6.46 MB)
03. M3 L5 03 Bias And Variance V2- vnkkwm46uU.mp4 (5.69 MB)
04. M3 L5 04 Two Ways For Estimating Expected Returns V3-2W6yIBDvfsQ.mp4 (5.84 MB)
05. M3 L5 05 Baselines And Critics V1-wqmqoiUuQHI.mp4 (14.04 MB)
06. M3 L5 06 Policybased Valuebased And ActorCritic V1-iyin896PNEc.mp4 (16.85 MB)
07. M3 L5 07 A Basic ActorCritic Agent V2-KdHQ24hBKho.mp4 (3.95 MB)
08. M3 L5 08 A3C Asynchronous Advantage ActorCritic V2-twNXFplIAP8.mp4 (14.97 MB)
09. M3 L5 09 A3C Asynchronous Advantage ActorCritic Parallel Training V2-kKRbAKhjACo.mp4 (3.77 MB)
10. M3 L5 10 A3C Asynchronous Advantage ActorCritic Offpolicy Vs Onpolicy V1-AZiy5R0DESU.mp4 (23.31 MB)
11. M3 L5 11 A2C Advantage ActorCritic V2-fIWe3xA97DA.mp4 (3.62 MB)
12. A2c Export V1-LiUBJje2N0c.mp4 (38.55 MB)
13. M3 L5 13 GAE Generalized Advantage Estimation V2-oLFocWp0dt0.mp4 (11.33 MB)
14. M3 L5 14 DDPG Deep Deterministic Policy Gradient Continuous Actionspace V1-0NVOPIyrr98.mp4 (7.85 MB)
15. M3 L5 15 DDPG Deep Deterministic Policy Gradient Soft Updates V1-RT-HDnAVe9o.mp4 (6.62 MB)
16. DDPG Export V1-08V9r3NgFSE.mp4 (30.37 MB)
17. M3L517 Summary HS 1 V1-rRuiMhijw s.mp4 (8.09 MB)
01. M3L601 Introduction HS V1-Nn1PblFSnP8.mp4 (2.99 MB)
02. M3L602 High Frequency Trading HFT RENDER V2-oM1zZdZ-8fE.mp4 (9.6 MB)
03. M3L603 Challenges Of Supervised Learning RENDER V1- hAPnbDtteM.mp4 (9.82 MB)
04. M3L04 Advantages Of Reinforcemnt Learning For Trading RENDER V1-rqHL4BZocI8.mp4 (10.36 MB)
05. M3L606 Optimization SC PT1 V1-6NiRtFyA2DU.mp4 (1.83 MB)
06. M3L607 Optimization SC PT2 V1-JzL66ZbTC9U.mp4 (2.11 MB)
07. M3L608 Optimization SC PT3 V1-3pN77gMg788.mp4 (2.97 MB)
08. M3L609 Optimization SC PT4 V2-N2LP-wg1jEI.mp4 (7.44 MB)
09. M3L610 Almgren And Chriss Model SC V1-rokcEQ4LXbU.mp4 (8.65 MB)
10. M3L611 Trading Lists SC V1-cGT-ADpHR74.mp4 (9.04 MB)
11. M3L612 The Efficient Frontier V1-EwM7Ksbs-ds.mp4 (8.25 MB)
04. Untitled-i2gVvXgOMnc.mp4 (2.16 MB)
01. Why Network-exjEm9Paszk.mp4 (17.37 MB)
02. Meet Chris-0ccflD9x5WU.mp4 (32.54 MB)
03. Elevator Pitch-S-nAHPrkQrQ.mp4 (20.63 MB)
04. Elevator Pitch-0QtgTG49E9I.mp4 (9.98 MB)
04. Pitching to a Recruiter-LxAdWaA-qTQ.mp4 (8.93 MB)
01. M4 L2 C01 Introducing Chhavi HS V1-imuw8tOMed4.mp4 (774.91 KB)
02. M4 L2 C02 Introduction To Multi Agent Systems V1-ra-w63kzq6I.mp4 (4 MB)
03. M4 L2 C03 Motivation For Multi Agent Systems V1-i s22qgQYL4.mp4 (4.61 MB)
04. M4 L2 C04 Applications Of Multi Agent Systems V2-fw0G gSDm6Q.mp4 (2.73 MB)
05. M4 L2 C05 Benefits Of Multi Agent Systems V2-NXDv9cEZTaw.mp4 (4.75 MB)
06. M4 L2 C06 Markov Games 2 V1-Y9qq4Jqnwls.mp4 (4.65 MB)
08. M4 L2 C07 Approaches To MARL V1-uKV9AJykin0.mp4 (5.06 MB)
09. M4 L2 C08 Cooperation Competition Mixed Environments A V1-vx6PIH5 oFg.mp4 (5.87 MB)
10. M4 L2 C09 Paper Description Part I HSAEG V1-nRKrQamUISs.mp4 (2.27 MB)
11. M4 L2 C10a Paper Description Part II V1-Ks9-TeCg3Fs.mp4 (2.89 MB)
12. M4 L2 C10b Paper Description Part II V2-4hFAhtLJR5U.mp4 (2.58 MB)
13. M4 L2 C11 Summary HS V1-yGPHGYHqjq8.mp4 (4.2 MB)
01. Alpha Zero Preview-Zzc1XJ1aJ-4.mp4 (6.76 MB)
02. Zero-Sum Game-uPw1dHVqdXQ.mp4 (4.86 MB)
03. Monte Carlo Tree Search 1 - Random Sampling-wn2B3j Qz6E.mp4 (6.31 MB)
04. Monte Carlo Tree Search 2 - Expansion and Back-propagation-H34Wtk1iNDY.mp4 (6.78 MB)
05. AlphaZero 1 Guided Tree Search-LinuRy47xbw.mp4 (8.02 MB)
06. Alpha Zero 2 Self-Play Training-wl1qfPXqRuQ.mp4 (5.14 MB)
07. Alphazero python classes walkthrough-hKnBQvtJ zQ.mp4 (26.9 MB)
07. TicTacToe using AlphaZero - notebook walkthrough-uUFuBscf98I.mp4 (29.33 MB)
09. Alphazero advanced tictactoe walkthrough-MOIk BbCjRw.mp4 (14.23 MB)
03. Untitled-kxDvrkg8ep0.mp4 (1.48 MB)
01. Introduction-ek2PD9RDrWw.mp4 (6.18 MB)
04. Another Gridworld Example-n9SbomnLb-U.mp4 (4.69 MB)
05. An Iterative Method-AX-hG3KvwzY.mp4 (27.57 MB)
08. Iterative Policy Evaluation-eDXIL oOJHI.mp4 (26.59 MB)
14. Policy Improvement-4 adUEK0IHg.mp4 (30.38 MB)
17. Policy Iteration-gqv7o1kBDc0.mp4 (8.14 MB)
20. Truncated Policy Iteration-a-RvCxlPMho.mp4 (14.13 MB)
23. Value Iteration-XNeQn8N36y8.mp4 (15.65 MB)
02. Why Neural Networks-zAkzOZntK6Y.mp4 (982.27 KB)
03. 29 Neural Network Architecture 2-FWN3Sw5fFoM.mp4 (2.83 MB)
03. Combinando modelos-Boy3zHVrWB4.mp4 (4.73 MB)
03. Layers-pg99FkXYK0M.mp4 (3.11 MB)
03. Multiclass Classification-uNTtvxwfox0.mp4 (1.88 MB)
04. DL 41 Feedforward FIX V2-hVCuvMGOfyY.mp4 (5.33 MB)
04. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.mp4 (1.72 MB)
05. Backpropagation V2-1SmY3TZTyUk.mp4 (6.52 MB)
05. Calculating The Gradient 1 -tVuZDbUrzzI.mp4 (3.31 MB)
05. Chain Rule-YAhIBOnbt54.mp4 (1.46 MB)
05. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.mp4 (5.69 MB)
06. Training Optimization-UiGKhx9pUYc.mp4 (2.96 MB)
07. Testing-EeBZpb-PSac.mp4 (2 MB)
08. Underfitting And Overfitting-xj4PlXMsN-Y.mp4 (6.42 MB)
09. Model Complexity Graph-NnS0FJyVcDQ.mp4 (4.9 MB)
10. DL 53 Q Regularization-KxROxcRsHL8.mp4 (1.01 MB)
11. Regularization-ndYnUrx8xvs.mp4 (7.57 MB)
12. Dropout-Ty6K6YiGdBs.mp4 (4.22 MB)
13. Local Minima-gF sW nY-xw.mp4 (819.86 KB)
14. Vanishing Gradient-W JJm 5syFw.mp4 (1.32 MB)
15. Other Activation Functions-kA-1vUt6cvQ.mp4 (2.3 MB)
16. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.mp4 (3.95 MB)
17. Learning Rate-TwJ8aSZoh2U.mp4 (927.05 KB)
18. Random Restart-idyBBCzXiqg.mp4 (394.99 KB)
19. Momentum-r-rYz PEWC8.mp4 (2.14 MB)
02. 03 Data And Lesson Outline RENDER V2-jPr-5aZA6NE.mp4 (5.03 MB)
04. Convolutional Layers (Part 2)-LX-yVob3c28.mp4 (19.85 MB)
08. Pooling Layers-OkkIZNs7Cyc.mp4 (5.82 MB)
15. Dropout-Ty6K6YiGdBs.mp4 (4.22 MB)
15. 动量-r-rYz PEWC8.mp4 (2.14 MB)
17. 04 Feature Visualization V1 RENDER V2-xwGa7RFg1EQ.mp4 (4.54 MB)
18. 05 Feature Maps V1RENDER V3-oRhsJHHWtu8.mp4 (2.84 MB)
19. 06 First Convolutional Layer T1 V1 RENDER V2-hIHDMWVSfsM.mp4 (9.51 MB)
21. 10 Visualizing Activations V1 RENDER V2-CJLNTOXqt3I.mp4 (3.35 MB)
26. 20 Summary Of Feature Viz V2 RENDER V2-r2LBoEkXskU.mp4 (3.49 MB)
03. Part 1 V2-n4mbZYIfKb4.mp4 (13.81 MB)
04. Py Part 2 V1-u50 ZyKqt8g.mp4 (34.58 MB)
05. Py Part 3 V2-u8hDj5aJK6I.mp4 (28.37 MB)
06. PyTorch - Part 4-AEJV RKZ7VU.mp4 (3.32 MB)
07. Py Part 5 V2-coBbbrGZXI0.mp4 (27.08 MB)
08. Py Part 6 V1-HiTih59dCWQ.mp4 (15.94 MB)
09. PyTorch - Part 7-hFu7GTfRWks.mp4 (14.62 MB)
10. Py Part 8 V1-3eqn5sgCOsY.mp4 (24.88 MB)
01. Introduction-ahoiVrq4qAk.mp4 (6.03 MB)
02. Lesson Overview C++-lR3PH3bL-9U.mp4 (7.4 MB)
02. Nd113 C3 L1 04 L Lesson Overview 2 V1-DjT2E23xhj8.mp4 (5.85 MB)
04. Why C++- t4ZvwfnuCA.mp4 (11.98 MB)
06. Static Vs Dynamic Typing-D7v6iIAORkE.mp4 (10.49 MB)
10. Doubles Are Bigger-uhwTWgmM2iY.mp4 (5.13 MB)
15. Two Functions Same Name-0ZF649G58l4.mp4 (6.09 MB)
15. Two Functions Same Name-9SgmzOfBmRU.mp4 (13.16 MB)
16. Function Signatures 1-T6kQ 4w98IQ.mp4 (11.65 MB)
17. Function Signatures 2-Sx4AWTmXl2U.mp4 (8.1 MB)
17. Function Signatures 3 V1-U3QAFb3AS1M.mp4 (2.2 MB)
22. Nd113 C Basics Last Video V1-dtu-RXovl0U.mp4 (1.63 MB)
01. Introduction To Compilation-dyzGEB8YDGg.mp4 (7.96 MB)
01. Introduction-4xHI5LFX-cQ.mp4 (4.28 MB)
03. Why Use Object Oriented Programming-G2KzZfNu9Ak.mp4 (10.64 MB)
01. Course Introduction-Lwc5oYApdUM.mp4 (3.25 MB)
02. C Opt 01 L V2-Kdx1 BI5ddc.mp4 (7.76 MB)
03. 02 L Intro To Comp HW V1 RENDER V1-WDMGkq9mkB8.mp4 (4.26 MB)
04. Nd113 Embedded Terminal V1-Bhl5JQ N9V8.mp4 (26.5 MB)
07. 03 L Binary V1 RENDER V1-K6CpHxnhc2s.mp4 (5.37 MB)
10. 04 L C And RAM V1 RENDER V1-60jEbKV1UOI.mp4 (3.58 MB)
12. C Opt 05 L V3-rTtZVyWxYG8.mp4 (4.47 MB)
16. Nd113 Story 1 V1-lIe2zso8A-w.mp4 (12.76 MB)
19. Nd113 C L2 01 V1-h P7ceb5ido.mp4 (2.31 MB)



Related News

Become a Deep Reinforcement Learning Expert Become a Deep Reinforcement Learning Expert
Become a Deep Reinforcement Learning Expert | 2.3 GB Learn the deep reinforcement learning skills...
Udemy   State of The art Research of Deep Reinforcement learning Udemy State of The art Research of Deep Reinforcement learning
Udemy State of the art Research of Deep Reinforcement learning Language: English Files Type:mp4,...
Nanodegree Program - Become a Deep Reinforcement Learning  Expert Nanodegree Program - Become a Deep Reinforcement Learning Expert
Alexis Cook (et al.) | Duration: 11:48 h | Video: H264 1280x720 | Audio: AAC 44,1 kHz 2ch | 2,29...
Advanced Reinforcement Learning in Python: from DQN to SAC Advanced Reinforcement Learning in Python: from DQN to SAC
Advanced Reinforcement Learning in Python: from DQN to SAC...

System Comment

Information

Error Users of Visitor are not allowed to comment this publication.

Facebook Comment

Member Area
Top News